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Human-driven alteration of the Chaco strongly affects ecological patterns and associated processes at all
spatial scales. To understand these modifications, sufficient methods for describing and quantifying high
levels of landscape complexity caused by human activities in the region are urgently needed. Most
methods involve the use of passive remote sensors, which capture complexity in only two dimensions
(2D). A common 2D approach has been to calculate landscape metrics, such as Shannon's Landscape
Diversity Index. But, it is not clear what aspects of three dimensional (3D) vegetation structure are being
captured by these metrics. 3D structure is known to be as important as or more important than 2D
structure in determining landscape patterns of biodiversity of many groups of organisms. In addition,
studies have used a limited number of coarsely defined land-cover classes to calculate metrics. Our
question was: how is vegetation structure related to remote sensing attributes in an agricultural frontier
in the subtropical dry Chaco, NW Argentina? A secondary question was to explore the relationships
between traditional landscape metrics and the semivariogram, a geostatistical tool used to describe 2D
complexity. We described landscape complexity from the panchromatic QuickBird band and measured
vegetation structure in 22-1 ha plots across an agricultural frontier in the subtropical dry Chaco, northern
Argentina. A total of 2683 individual trees in 51 plant species and 21 families were measured in the field
and 25,665 points were recorded to estimate foliage height diversity. Four landscape complexity groups
were identified by a two-way cluster analysis using the 2D metrics. Four vegetation variables differed
significantly among the 2D complexity groups: the standard deviation of the Enhanced Vegetation Index,
the coefficient of variation of density per transect (CV density), mean tree diameter (DBH), and foliage
height diversity (FHD). Largest patch index and semivariogram range were negatively related to CV
density, mean DBH and FHD, while semivariogram sill, mean shape index, landscape shape index and
number of patches were positively related to all three vegetation variables. Landscape metrics were not
related to tree species diversity or density as previously shown, probably as a result of structural simi-
larity among the dominant tree species in the Chaco biome.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Human-driven changes of landscapes are affecting biodiversity
patterns and associated ecological processes at all spatial scales
(MacDougall et al., 2013). Landscape complexity, broadly defined as
the number, arrangement, and scaling relationships of key ele-
ments of ecosystem structure (Gustafson, 1998; Lovett et al., 2006),
mediates changes in biodiversity patterns and associated processes.
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The mechanisms of this mediation are variable and include species’
movement (Huffaker, 1958), changes in productivity and biomass
(Daufresne and Loreau, 2001), and changes in food web structure
(Bellisario et al., 2012). To understand the consequences of human-
driven changes, methods for describing and quantifying landscape
complexity are urgently needed.

Different methods to quantify changes in landscape complexity
have been developed in the last decades (Lovett et al., 2006; Wu,
2013). Most of these methods involve the use of passive remote
sensors which capture complexity in two dimensions (2D) (Hyde
et al., 2006) and the calculation of landscape metrics to quantify
2D complexity, such as Shannon's Landscape Diversity Index (SDI)
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(Gustafson, 1998). These metrics reveal how landscape complexity
affects processes occurring at species-, food web-, and ecosystem-
scales (Kupfer, 2012), though most studies involving their calcu-
lation were interested in examining their behavior through time
(Uuemaa et al., 2009) or were limited to a few coarsely defined
land-cover classes such as forests. Alternatively, complexity can be
described in three dimensions (3D). LIDAR (LIght Detection And
Ranging) technology has been used successfully to capture vege-
tation 3D complexity (Lefsky et al., 2002) but the high costs of this
technology still limit its application in most parts of the world
(Selkowitz et al., 2012). In the absence of LIDAR and given that
anthropogenic and natural disturbances affect habitats sometimes
in a subtle manner we need to combine remote sensing and field
data in order to identify what aspects of complexity are being
modified by human activities (Pisek and Oliphant, 2013). But there
are not enough field studies to confidently calibrate the informa-
tion yielded by most remote sensors (Hall et al., 2011). In addition,
studies quantifying 2D landscape complexity do not clearly link
pattern to processes (Li and Wu, 2004; Cushman et al., 2008); thus
we are not able to clearly interpret metrics. One way of inter-
preting the link between patterns and processes is examining what
aspect of the 3D vegetation is being captured by landscape metrics.

Linking field data of vegetation structure to landscape
complexity as determined from satellite images has shown to be
complex (Malhi and Rom�an-Cuesta, 2008) likely because vegeta-
tion structure depends on many factors such as plant species
identities, species distributions, species life history traits, and
disturbance history, among others (Whitmore, 1978). The degree to
which each factor can be represented in 2D dimensions will
determine how well vegetation structure is represented in satellite
images (Broadbent et al., 2008). For example, studies have generally
focused on plant species richness and they showed variable and
sometimes contradictory relationships with landscape metrics.
Kumar et al. (2006) showed that plant species richness was posi-
tively related to Simpson's landscape diversity, edge density and
interspersion and negatively related to mean patch size; Moser
et al. (2002) showed that it was positively related to shape
complexity, and Burton and Samuelson (2008) showed that it was
positively related to forest cover and largest patch index and
negatively related to landscape diversity. Fewer studies have
related other aspects of vegetation to landscape metrics (e.g. forest
succession stage and crown closure were related to Shannon's
landscape diversity (Terzio�glu et al., 2009)). Last, a smaller group of
studies have examined vegetation characteristics in relation to
semivariograms, a geostatistical tool used to describe 2D
complexity from satellite images (Curran, 1988; Costantini et al.,
2012). Semivariograms have been used mainly to characterize
canopy cover (Cohen et al., 1990; Colombo et al., 2004; Johansen
and Phinn, 2006) but it is not clear how they complement with
traditional metrics. Because most studies focus on only one or two
characteristics of vegetation to relate them to landscape metrics or
their description of vegetation is frequently coarse, we still do not
understand the generalities of the relationship between vegetation
structure and remote sensing data.We need to refine the resolution
of both, vegetation and remote sensing data in order to find these
generalities. This approach will help us scale up the study of bio-
logical patterns and processes from plot to landscape.

Our question in this study was: how is vegetation structure
related to remote sensing attributes in an agricultural frontier in
the subtropical dry Chaco, NW Argentina? A secondary question
was to explore the relationships between traditional landscape
metrics and the semivariogram. We collected vegetation data at
fine scale and QuickBird data in 22 1 ha-plots including forest, ri-
parian forest, and agricultural fields across the agricultural frontier.
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2. Methods

2.1. Study area

This study was conducted in the dry Chaco biome within the
Tapia-Trancas watershed located in the province of Tucum�an, NW
Argentina (26�500S, 65�200W, Fig.1). The dry Chaco, one of the three
biomes within the Chaco, shows a continental, warm and sub-
tropical climate with mean annual temperature of 20 �C (18e23 �C)
and annual rainfall of 450 mm falling between October and March
(Bianchi and Y�a~nez, 1992). It is characterized by subtropical xero-
phytic vegetation that includes spiny, small trees and shrubs, some
cacti, herbs, epiphytes, and vines (Cabrera, 1976; Vervoost et al.,
1981). Dominant tree species include Schinopsis lorentzii (Ana-
cardiaceae) and Aspidosperma quebracho-blanco (Apocynaceae)
whereas dominant shrubs include Acacia aroma, Acacia praecox,
Prosopis alba and Cercidium praecox (Fabaceae) (Digilio and
Legname, 1966).

During the last 40 years the Tapia-Trancas watershed has
experienced increasing habitat degradation due to agricultural
expansion, deforestation, grazing pressure, and fire (Aizen and
Feinsinger, 1994; Grau et al., 2005; Aide et al., 2012). This has
resulted in a complex mosaic of forest fragments embedded in a
matrix of pastures, corn, sorghum, legume, and soybean fields.
Large areas of nearly continuous dry Chaco forest can still be found
surrounding the agricultural fields and urban areas are relatively
small. As any other ecosystem edge, where particularly high species
diversity and complex ecological interactions are found (Fagan
et al., 1999), agricultural frontiers in the dry Chaco are a priority
for conservation (Brown et al., 2005).
2.2. Image pre-processing

To describe landscape complexity we used a high resolution
QuickBird image (2.6 m resolution for multispectral bands and
0.55 m resolution for panchromatic band) collected in November
2007, centered on the study site and covering an area of 10� 10 km.
This period of the year was selected because the rainy season had
started and tree crowns were full of leaves. Accordingly, during this
period the maximum biological activity occurs (e.g., Monmany and
Aide, 2009).

QuickBird multispectral images have four bands (blue
[450e520 nm], green [520e600 nm], red [630e690 nm], and near
infrared [760e900 nm]) that yield information about differences
between soil (blue band) and vegetation and information about
different attributes of plant communities (green, red, and near
infrared). The QuickBird data was subjected to a series of pro-
cedures. First, the red and infrared bands in themultispectral image
were enhanced using the Gram-Schmidt Spectral Sharpening
module in ENVI 4.8 (Exelis Visual Information Solutions, Boulder,
Colorado). Through this pan-sharpening a low spatial resolution
band (2.8 m in the multispectral image) is merged with a high-
resolution band (the 0.55 m panchromatic band) with resampling
to the high-resolution pixel size (Exelis Visual Information
Solutions, 2004). The result is an image with the best spectral
and spatial resolution possible. Second, the image was converted to
top-of-atmosphere spectral radiance and then atmospherically
corrected to at-surface spectral reflectance using the QUAC tool in
ENVI 4.8.

Once corrected, we used the built-in function in ENVI to calcu-
late the Normalized Difference Vegetation Index (NDVI) and we
used Band Math to calculate the Enhanced Vegetation Index (EVI),
both derived from combining the red (RED) and infrared (NIR)
bands according to the following:
pe complexity and vegetation structure related across an agricultural
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Fig. 1. Study site in NW Argentina. The QuickBird image shows the 10 � 10 km area within which we selected 22 plots (numbered) measuring 1 ha each.
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NDVI ¼ ðNIR� RED
NIRþ RED

Þ (1)

EVI ¼ G � NIR� RED
ðNIRþ C1 � RED� C2 � BLUE þ LÞ (2)

where G (2.5) is called the gain factor, C1 (6) and C2 (7.5) are
empirical parameters, BLUE is the blue band, and L (1) minimizes
soil background reflectance variation (Gallardo-Cruz et al., 2012).
We calculated the EVI because, as opposed to NDVI, it does not
saturate under dense canopy conditions (Gallardo-Cruz et al., 2012).
2.3. Landscape metrics and semivariograms

In ArcMap 10 (ESRI, 2011), a shapefile was created consisting of
100e200 � 200 m plots arranged in a regular grid (Fig. 1). We used
this shapefile as a mask to extract the information from the 22 plots
sampled in the field (see below) for all subsequent image analyses
using the spatial analyst tool. First, in ENVI 4.8 we ran an unsu-
pervised isodata classification of the panchromatic band into seven
classes to calculate landscape metrics. This procedure resulted in a
finely resolved characterization given the relatively high number of
classes within a visually simple landscape. Using the Patch Analyst
module (Rempel et al., 2012) in ArcMap 10, we calculated seven
landscape-level metrics, related to the proportion area-edge, the
shape and aggregation of patches, and the diversity of patch types
(Landscape complexity variables in Table 1).

Second, we extracted the pixel values from the red, the infrared,
and the NDVI band to calculate the semivariogram, g(h) in each
band and plot according to:

gðhÞ ¼ 1
2NðhÞ

XN

i¼1

½ZðxiÞ � Zðxi þ hÞ�2 (3)

where N(h) is the number of pairs of observations (Z) made at
Please cite this article in press as: Monmany, A.C., et al., How are landsca
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locations xi and (xi þ h), separated by a vector h (Cressie, 1993).
Thus g(h) measures the degree of similarity between the values of
pairs of pixels separated by distance h. The semivariogram pa-
rameters range and sill were determined for each plot using the
gstat package (Pebesma, 2004) in R (R Development Core Team,
2011). Because the range indicates the distance at which the
maximum variance is observed (sill), both parameters are useful to
describe heterogeneity (Cohen et al., 1990). Weighted sum of
squared differences was used for model fitting (spherical and
exponential) and 150 m was the maximum distance for semi-
variance calculations.
2.4. Three dimensional vegetation structure

From the large-scale regular grid, 22 1 ha-plots were selected
based on accessibility and land cover representation (Fig. 1). Con-
trasting land covers were found in the study area and we included a
similar number of plots in each land cover type to capture the
variability in complexity. The plots included agricultural fields
mostly represented by alfalfa, corn, and wild herbs; agricultural
fields with hedgerows containing large trees; riparian forests sur-
rounding the Choromoro river; and forests with different degrees
of disturbance, including highly disturbed areas with bare ground.
Within each plot we established ten 2 x 100m-transects (each 10m
apart) along which vegetation characteristics were measured every
10 m. Between any two points separated by 10 mwe established an
additional measuring point determined randomly, making the total
number of sampled points per transect 20 (starting point was 0 m).
Random points were used to “fill in” the spatial variability at scales
smaller than a distance of 10m along the transect. At each sampling
point detailed information on vegetation structure was collected
fromwhich additional variables were calculated (Table 1). A total of
2683 individuals in 50 woody plant species and 21 families were
inventoried (Appendix 1) and for all individuals larger than 5 cm of
diameter-at-breast-height (DBH) DBHwas measured at 1 m at each
side of the transect along the 100 m (Monmany, 2013). To
pe complexity and vegetation structure related across an agricultural
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Table 1
Names and description of variables measured in the field (related to structure, composition, and spatial arrangement) and in the classified panchromatic
band of the QuickBird image. In parentheses, the abbreviations read on Fig. 2.

Variable name Description

Structural variables
Mean DBH Mean diameter-at-breast-height
DBH SD Standard deviation of DBH
DBH range Maximume minimum value of DBH
DBH diversity ShannoneWeiner's diversity index applied to DBH classes
Basal area Sum of basal area for the plot
Tress>40 cm DBH Number of trees larger than 40 cm DBH
Tress>10m Number of trees higher than 10 m
Foliage height diversity ShannoneWeiner's diversity index applied to foliage height classes
Composition
Density Number of individuals per hectare
Species richness Total number of species
Species diversity ShannoneWeiner's diversity index
Spatial arrangement
Mean density per transect Mean density per transect within each plot
CV density per transect Coefficient of variation (SD/mean) of density per transect and within each plot
Cox Index Variance/mean of density per transect and within each plot
Landscape complexity
NDVI Sill (Sill) Semivariogram sill using the NDVI band
NDVI Range (Range) Semivariogram range using the NDVI band
Largest Patch Index (LPI) Percent of the total landscape that is made up by the largest patch
Landscape Shape Index (LSI) Total landscape boundary and all edge within the boundary divided by the

square root of the total landscape area and adjusted by a constant.
The LSI increases with increasing landscape shape irregularity or
increasing amounts of edge within the landscape.

Patch Richness (PR) Number of different patch types within the landscape's boundary
Shannon's Diversity Index (SDI) Measure of relative patch diversity
Shannon's Evenness Index (SEI) Measure of patch distribution and abundance. Equal to zero when the

observed patch distribution is low and approaches one when the
distribution of patch types becomes more even.

Mean Shape Index (MSI) Shape complexity. Equal to 1 when all patches are square and it
increases with increasing patch shape irregularity.

Total number of patches (NUMP) Total number of patches in the landscape
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determine foliage height diversity a pole was erected up to the
canopy (maximum average height in the Chaco is 15 m, Cabrera,
1976). We counted the number of times the pole made contact
with a leaf or branch (MacArthur and MacArthur, 1961) within
seven vertical layers (0e0.5 m, 0.5e1 m, 1e2 m, 2e4 m, 4e6 m,
6e10 m, and >10 m). To estimate foliage height diversity we
calculated the ShannoneWiener diversity index: -

P
pi ln pi, where

pi is the proportion of the total foliage which lies in the ith of the
chosen horizontal layers (i ¼ 1, 2 … 7, MacArthur and MacArthur,
1961). We recorded 25,665 points for this estimation.

2.5. Data analysis

To determine what aspects of vegetation structure were related
to landscape complexity as measured from the satellite image, we
ran a series of analyses. First a Twoway Cluster Analysis was run in
PCORD 5.0 (McCune and Mefford, 1999). Hierarchical clustering is
useful to organize a large data set into groups on the basis of a given
set of quantitative characteristics; it successively joins the most
similar observations and the results are normally displayed as
dendrograms (McCune et al., 2002). Two way Cluster analysis has
been used to assist in the identification ofmeaningful landscape and
community patterns (e.g. Khan et al., 2011). We analyzed the land-
scapemetrics calculated from the panchromatic band per site in the
main matrix (22 sites in the rows and nine landscape metrics in the
columns) (Landscape complexity in Table 1). The linkagemethodwas
Flexible Beta and the distancemeasurewas Sorensen (BrayeCurtis).
In PC ORD, the resulting dendrogram was scaled by Wishart's
objective function converted to a percentage of information
remaining (McCune andMefford,1999). The final number of groups
was determined combining statistical analysis with dendrogram
examination and on-field knowledge of the sites. The statistical
Please cite this article in press as: Monmany, A.C., et al., How are landsca
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significance of the groups was analyzed using Multi-Response Per-
mutation Procedures (MRPP). MRPP is a nonparametric technique
for testing the hypothesis of no difference between two or more
groups. The A statistic (i.e., “chance-corrected within-group agree-
ment”) was used in combinationwith the p-value to determine the
significance. If A ¼ 0, the groups are no more or less different than
expected by chance; if A ¼ 1, all sample units are identical within
each group. In community ecology A > 0.3 is fairly high.

Second, we ran a discriminant function analysis (DFA) to test
how the “complexity” groups reflected differences in EVI and
vegetation characteristics. DFA is an eigenanalysis technique that
requires predefined groups and the discriminant function itself is
the linear combination of variables that maximizes the probability
of correctly assigning observations to their pre-determined groups
(McCune et al., 2002). The matrix analyzed in this step included EVI
and a subset of the vegetation characteristics measured in the field.
For this subset we selected: mean EVI, the standard deviation of
EVI, tree density, tree Shannon's diversity, mean DBH, CV of density
per transect, number of trees higher than 10 m, basal area, and
foliage height diversity. Data were log-transformed to correct for
non-normality. The package MASS in R was used to run the linear
discriminant analysis (Venables and Ripley, 2002). Finally, we ran
ANOVA and Tukey (pos-hoc comparisons) tests in R to test for
differences in the four vegetation characteristics that best
explained the complexity groups.

3. Results

3.1. Two-way cluster analysis

The dendrogram of the plots resulting from the Twoway Cluster
Analysis was trimmed at four groups (Fig. 2). At this level of
pe complexity and vegetation structure related across an agricultural
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Fig. 2. Two-way cluster dendrogram based on Sorensen distance measure showing the four complexity groups (different colors and symbols) and the landscape metrics. The matrix
in gray tones shows the distribution of minimum and maximum values for the metrics. The percentage scales show the amount of information explained by the dendrograms. Plot
locations can be seen in Fig. 1. LPI; Largest Patch Index, Sill: NDVI semivariogram sill, Range: NDVI semivariogram sill, LSI: Largest Shape Index, SDI: Shannon's Diversity Index, SEI:
Shannon's Evenness Index, PR: Patch Richness, MSI: Mean Shape Index, NUMP: Number of Patches. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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grouping more than 75% of the information was retained and the
within-group agreement was fairly high (A ¼ 0.695, p ¼ 4 � 10�8).
In addition, this grouping was representative of the complexity
observed in the field. Based on the landscape metrics we distin-
guished visually two groups of plots; one group included themetric
Largest Patch Index (LPI) and the NDVI semivariogram parameters
whereas the second included the rest of the metrics (Fig. 2, upper
dendrogram). The red, IR and NDVI bands showed very similar
values of range and sill. In the two-way cluster analysis, only NDVI
was included to facilitate interpretation.

The four final complexity groups were: 1. agricultural plots; 2.
riparian/hedgerow plots; 3. bare ground plots; and 4. forest plots
(Fig. 2, lower dendrogram). In the agricultural plots 2D complexity
Please cite this article in press as: Monmany, A.C., et al., How are landsca
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was driven mainly by a high percent of the plots covered by large
patches (highest Largest Patch Index), which were different from
the neighbor patches (highest NDVI range). Landscape Shape Index
(LSI), Shannon's Diversity Index (SDI), and Shannon's Evenness
Index (SEI) were lowest, though highly variable. Riparian/hedgerow
plots, represented by riparian sites and hedgerows dividing prop-
erties, showed a high 2D complexity. This complexity was driven by
high NDVI variability (highest sill) and high patch shape irregularity
(highest Mean Shape Index); Patch Richness (PR) was lowest in
these sites. Bare ground plots, represented by agricultural plots and
disturbed forest with a high percent of bare soil cover, showed
intermediate values of 2D complexity. Landscape Shape Index,
Shannon's Diversity Index, Shannon's Evenness Index, Mean Shape
pe complexity and vegetation structure related across an agricultural
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Table 3
A. ANOVA table and mean values for the four most important variables in the
discriminant Function Analysis among the four complexity groups (see also Fig. 3).1:
Agricultural plots, 2: Riparian/hedgerow plots, 3: Bare ground plots, and 4: Forest
plots.

A. ANOVA results

Variable df SS F p

EVI SD 3 0.0342 10.251 0.0004
CV density per transect 3 0.1370 3.1419 0.0508
Mean DBH 3 2.3712 4.9514 0.0112
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Index, total number of patches (NUMP), semivariogram sill, and
semivariogram range were intermediate. At the opposite extreme
of agricultural plots, 2D complexity in forests was represented by a
high diversity of patch types (highest Shannon's Diversity Index
and Shannon's Evenness Index), a high amount of edges among the
patches (highest Landscape Shape Index) and the highest number
of patches (NUMP). The smallest percent of area covered by large
patches (lowest Largest Patch Index), and the most homogeneous
plots (lowest NDVI semivariogram parameters) were observed in
forests.
Foliage height diversity 3 0.2234 5.3252 0.0084

B. Mean values

Variable 1 2 3 4

EVI SD 0.54 0.72 0.38 0.32
CV density per transect 0.14 1.06 0.66 0.44
Mean DBH (cm) 2.80 13.16 6.07 8.95
Foliage height diversity 0.55 1.43 1.10 1.46
3.2. Discriminant function analysis

In order to identify which vegetation structure characteristics
were related to remote sensing attributes, we based the discrimi-
nant analysis on the groups defined by the two-way cluster anal-
ysis. The first discriminant function explained 59.9% of the variance
in the data (Wilk's Lambda¼ 0.025, df1¼27, df2¼ 29.85, F¼ 2.782,
p ¼ 0.004, Table 2A). The variables that contributed most strongly
to the formation of the discriminant functions were: the standard
deviation of EVI, the coefficient of variation of tree density per
transect, mean DBH and foliage height diversity (Table 2B). The
standard deviation of EVI was dominant over the other three var-
iables, with more than double the absolute value. When the accu-
racy of the model was tested, the percent of plots correctly assigned
by themodel to the groups was low in group 2 (Riparian/hedgerow,
0.33) and higher in the other three groups (0.57e0.71) (Table 2C).
3.3. ANOVA tests

EVI SD, the coefficient of variation of density per transect, mean
DBH and Foliage Height Diversity significantly differed among the
four complexity groups defined by the two-way cluster analysis
(Table 3; Fig. 3). EVI SD was highest but highly variable in the
Table 2
Results of the discriminant function analysis (DFA) of the landscape metrics
measured on the panchromatic and the NDVI bands of the QuickBird image. (A)
Relative contributions of each discriminant function to distinguish among the four
complexity groups (see also Figs. 2 and 3). (B) Relationship of each variable to the
first discriminant axis. (C) Accuracy of the model, percent of plots correctly assigned
by the model to the four complexity groups.

A. Relative contributions of discriminant functions

Axis Eigenvalue Proportion explained

LD1 4.918 0.5991
LD2 2.235 0.2723
LD3 0.1286

B. Loadings on first axis

Variable Raw coefficient of linear discriminants

EVI SD �21.201172
CV density per transect 8.341639
Mean DBH �7.202831
Foliage height diversity 5.280039
Basal area 3.444887
Species diversity 2.632250
Tress > 10 m �2.431245
Density 1.347714
Mean EVI 1.059494

C. Percent of correct placement

Group Percent correct

1 0.5714
2 0.3333
3 0.6000
4 0.7143
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agricultural plots, followed by the riparian/hedgerow and bare
ground plots, respectively. EVI SD was lowest and significantly
different in the forest plots and the lowest variability was observed
in the riparian/hedgerow plots. The CV of density per transect was
highest in the riparian/hedgerow plots, followed by the bare
ground and forest plots. It was lowest and significantly different in
the agricultural plots and the highest variability was observed in
the bare ground plots. The lowest variability was observed in the
forest plots. Mean DBH was highest in the riparian/hedgerow plots,
followed by the bare ground and agricultural plots. Both bare
ground and agricultural plots included some forest and many
agricultural plots, which resulted in a high mean DBH variability
and the lowest values in these two groups. The lowest variability
was observed in the forest plots. Foliage Height Diversity was
highest in the riparian/hedgerow plots, followed by the forest and
agricultural plots. The lowest value and the highest variability of
Foliage Height Diversity were found in the agricultural plots. The
lowest variability was observed in the forest plots.
3.4. Linking vegetation structure to remote sensing attributes

The field vegetation measurements corresponded to the remote
sensing attributes in different ways. First, in the agricultural plots
vegetation variables showed the lowest values because the major
part of the plots did not have trees; low 3D complexity was rep-
resented by the lowest values of CV density per transect, mean
DBH, and Foliage Height Diversity. In two dimensions this was
translated into the lowest values of Landscape Shape Index (low
total amount of edges among the patches), Shannon's Diversity
Index and Shannon's Evenness Index. No field data matched the
highest values of Largest Patch Index and NDVI range observed in
the agricultural plots, but a high variability of vegetation structural
characteristics such as canopy type, plant physiognomy, and can-
opy architecture (high standard deviation of EVI) added informa-
tion to the description of 2D. Second, in the riparian/hedgerow
plots the highest values of vegetation variables and the highest
values of some 2D metrics were observed. The highest values of CV
density per transect, mean DBH, and Foliage Height Diversity were
translated into the highest values of NDVI variability (sill) and
highest patch shape irregularity (Mean Shape Index). Third, in the
bare ground plots both field measurements and satellite data
showed intermediate values. Fourth, in the forest vegetation
measurements did not show the highest values but the smallest
variation of CV density per transect, mean DBH, and Foliage Height
Diversity was observed in these plots. The highest diversity of patch
pe complexity and vegetation structure related across an agricultural
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Fig. 3. Box-and-whisker plots of the four most important variables identified by the discriminant Function Analysis among the four complexity groups: Standard Deviation of
Enhanced Vegetation Index (EVI SD), Coefficient of Variation (CV) of density per transect, mean Diameter-at-Breast Height (DBH), and Foliage Height Diversity (FHD). The box shows
the lower and upper quartiles, the black line within the box is the median, and the whiskers are the minimum and maximum values, respectively. The y-axis is in a logarithmic scale.
1: agricultural plots, 2: riparian/hedgerow plots, 3: bare ground plots, and 4: forest plots. Significant differences resulting from Tukey's poshoc comparisons are represented by the
letter above each box.
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types (Shannon's Diversity Index and Shannon's Evenness Index),
highest amount of edges among the patches (Landscape Shape
Index) and highest number of patches (NUMP) did not correspond
to the highest values of vegetation variables. Instead, the homo-
geneity observed in three dimensions was translated into the
smallest percent of area covered by large patches (lowest Largest
Patch Index), the lowest NDVI semivariogram parameters, and the
lowest standard deviation of EVI calculated from the satellite data.

4. Discussion

We were able to interpret landscape metrics calculated from a
QuickBird image by examining their relationship with field data
collected in the subtropical Chaco. The two-way cluster analysis
separated the metrics into two groups and the plots into four
groups based on data calculated from the image. The metrics
included landscape composition (the number and amount of
different habitat types; e.g. Shannon's Diversity Index), landscape
configuration (the spatial arrangement of those habitat types; e.g.
Mean Shape Index), and landscape heterogeneity (e.g. semivario-
gram sill) variables. A combination of satellite bands was related to
vegetation structure and vegetation characteristics that better
explained the grouping included structural and spatial arrange-
ment variables such as mean DBH and the CV of density per tran-
sect, respectively.

Combining 2D and 3D measures of complexity we obtained a
complete spatial description of the plots. In contrast to previous
Please cite this article in press as: Monmany, A.C., et al., How are landsca
frontier in the subtropical Chaco, NW Argentina?, Journal of Arid Environ
studies (Moser et al., 2002; Kumar et al., 2006; Burton and
Samuelson, 2008), we examined a list of vegetation characteris-
tics, one of which was plant species diversity and we did not find
plant species diversity or density to be related to landscapemetrics.
This may be a particularity of the Chaco forests, where one plant
family is dominat (i.e. Fabaceae) and the plants in general show
very similar structural characteristics to struggle against drought.
Species diversity may not be well represented by metrics in the
Chaco because differences among species may be subtle and not
well captured by the QuickBird image there. We suggest that spe-
cies diversity may not be a useful vegetation variable to link to
landscape metrics in ecosystems physically similar to Chaco.
Instead, the coefficient of variation of density per transect, mean
DBH, and Foliage Height Diversity are better surrogates of vegeta-
tion structure to be linked to remote sensing data.

The low three dimensional complexity observed in the agri-
cultural plots was related to a low compositional complexity (i.e.
low values of Shannon's Diversity Index and Shannon's Evenness
Index). Previous studies do not report a comparison between
vegetation and compositional vs configurational complexity; we
suggest that vegetation structure at a micro-scale (e.g. considering
herbs height) should be explored in relation to landscapemetrics in
order to understand configurational complexity and correctly
calibrate remote sensing data. Riparian/hedgerow plots showed a
high three dimensional that corresponded to a high configurational
complexity. This result has been previously found in riparian en-
vironments of wetter regions of the world (Johansen and Phinn,
pe complexity and vegetation structure related across an agricultural
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2006) suggesting that the pattern is strong and putting riparian
forests at a focal position to calibrate data from remote sensing. In
forests, the smallest variation of three dimensional complexity
corresponded mainly to a high compositional complexity, the
lowest semivariogram parameters and lowest standard deviation of
EVI. These results agree with previous studies relating variables
other than plant diversity to metrics, in that compositional
complexity as determined from remote sensing depended on the
variability in vegetation data (e.g. forest succession stage and crown
closure) (Terzio�glu et al., 2009).

Two dimensional complexity was best described in the agri-
cultural plots by the combination of three satellite bands: high
values of the panchromatic Largest Patch Index, high values of NDVI
semivariogram range and high values of the standard deviation of
EVI. All three bands showed different aspects of 2D complexity,
thus we recommend combining bands when vegetation-satellite
data are explored. In addition, an interesting outcome of the two-
way dendrogram was that Largest Patch Index, a configurational
metric, and NDVI semivariogram range gave information similar
enough as to be grouped together and apart from the rest of the
metrics. This is the first study reporting the similarity between a
traditional landscape metric and the semivariogram and we
recommend to include semivariograms in combination with other
metrics in future studies calibrating the information from remote
sensing.

The relationship between landscape complexity as measured
from the image and vegetation structure as measured in the field
may be influenced by different factors. First, it has been acknowl-
edged that the scale (i.e. grain and extent) at which each was
measured can largely influence the results (Uuemaa et al., 2009;
Gallardo-Cruz et al., 2012). In our case, we assured that scale had
aminimum effect by using the highest spatial resolution possible in
the image (both the panchromatic and the pansharpened bands
had a 0.6 m pixel size) and the highest resolution possible in the
field (measured all plants within 10e2 m � 100 m transects per
plot). In addition, we used the largest extent logistically possible to
measure in the field (i.e. 1 ha). Still downscaling and upscaling
landscape metrics in relation to vegetation remain a challenge as
has been pointed out in other studies (Mander et al., 2005).

Second, the spectral information used to calculate metrics can
alter the relationship between the image and field data (Wen et al.,
2012). In our study the semivariogram calculated on the individual
bands red and near infrared were almost identical to those calcu-
lated from the NDVI. Similar results have been previously attributed
to highly fractal vegetation (Wen et al., 2012). In addition in our
study the complexity addressed by the EVI band corresponded in
most cases with that addressed by the NDVI band while the
panchromatic band represented other aspects of complexity. NDVI
and EVI are usually used in combination given the complementary
information they yield with respect to vegetation (Huete et al.,
2002) and our results reinforce this recommendation.

Third, different metrics used to describe landscape complexity
can relate in different manners to vegetation complexity (Cushman
et al., 2008). To address this issue, in our study we followed a
conservative approach selecting the metrics by three criteria: 1-
metrics only at the landscape level, 2- metrics that showed the least
inter-correlation possible, and 3- metrics that have shown to be less
sensitive to classifications. Metrics calculated at the landscape level
have previously been shown to explain variation better than met-
rics at the class level (Cushman et al., 2008). Therefore and in the
search for simplicity, we limited the calculations to this level. In
addition, it has been repeatedly pointed that many metrics are
highly intercorrelated (Uuemaa et al., 2009). We tried to minimize
this problem including metrics that relate to different aspects of
compositional and configurational complexity. For example, both
Please cite this article in press as: Monmany, A.C., et al., How are landsca
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Largest Patch Index and Largest Shape Index belong to the config-
urational complexity metrics but have been shown to be inde-
pendent from one another (Cushman et al., 2008). In fact, our
results showed the same pattern. Last, we used metrics that show
low sensitivity to image classifications such as Shannon's Diversity
Index and Shannon's Evenness Index (Altamirano et al., 2012).

4.1. Study implications and conclusions

This study integrated high resolution field data with high res-
olution image data to understand complexity. This is the first study
that combines semivariograms with traditional landscape metrics
to understand how they complement each other at the moment of
describing complexity. Our approach, though costly in terms of
human effort, contributes to the open question of how satellite
imagery can be calibrated to understand what aspect of vegetation
they are representing (Pisek and Oliphant, 2013). Because LIDAR
data is generally not available in many regions of the world
(Selkowitz et al., 2012) we need to extract the most information
possible from satellite images and validating with field data is of
upmost importance.

We have shown how two-way dendrograms give useful infor-
mation on the inter-relationships among landscape metrics (e.g.
Largest Patch Index and semivariogram parameters) and given that
metrics provide information on texture, heterogeneity and graini-
ness of landscapes (Cushman et al., 2008), a theoretical challenge
emerging from this study is to understand how these metrics are
related to texture calculated from the image, among other image
descriptions (e.g. Gallardo-Cruz et al., 2012).

Our study has implications for the subtropical dry Chaco, an
understudied region of the world which is currently a threatened
ecosystem. We have shown that riparian/hedgerow plots provide
highly complex habitats. In the face of the projected land cover
changes (Aide et al., 2012) one question is how these forests, which
are product of natural (riparian) and human (hedgerows) actions
are being used by other species in the Chaco. Because highly
complex habitats are expected to harbor a high number of species
and this has been confirmed by our own data and other studies
(Bianchi et al., 2006; Monmany, 2013), we conclude that these sites
are of special conservation importance for the biodiversity and
ecological processes in subtropical Chaco. In addition, we have
shown that highly disturbed forests with a high percent of bare
ground formed a unique complexity group and it is important to
understand what the implications for biodiversity are. We made an
objective, non-functional description of landscape complexity but a
question remains open related to how these metrics are related to
vegetation characteristics when a functional description is used
instead (Fahrig et al., 2011). Last, an open question is how the
relationship between metrics and field data changes across
different ecosystems.
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